pdf NTB 24-17 Geosynthesis of Northern Switzerland(152.58 MB)

In accordance with the regulatory requirements, the geological investigation and integration work carried out during the third and final stage of the site selection process substantiates the safety-relevant knowledge and understanding of the geological barrier. The chosen approach combines a broad spectrum of methods and multiple independent lines of evidence to ensure robust conclusions for site selection and the demonstration of long-term safety. The studies confirm and emphasise the excellent barrier function of the Opalinus Clay, as documented previously by extensive research in Northern Switzerland and at the Mont Terri rock laboratory over a 30-year period. The results are compatible with worldwide findings from applied studies and research projects including international radioactive waste disposal programmes, hydrocarbon industry, carbon capture and storage, and tunnelling.

The ~ 100 to 120 m thick Opalinus Clay is the host rock and primary geological barrier in the three investigated siting regions Jura Ost (JO), Nördlich Lägern (NL) and Zürich Nordost (ZNO). It is characterised by a low lithological variability, a high clay-mineral content (typically around 60 wt.-%), a very low hydraulic conductivity, and favourable geochemical conditions for radio­nuclide retention (high sorption capacity, reducing conditions). Low-permeability confining units above and below the host rock provide an additional contribution to the geological barrier. Independent evidence for slow transport in the high-clay low-conductivity sequence of the host rock and its confining units is provided by profiles of natural tracer in porewater. These profiles indicate diffusion-dominated transport over hundreds of thousands to millions of years in the geological past.

Potential disturbance of the barrier function by natural processes is minimised by placing the repository in an area with subhorizontal to gently dipping strata at sufficient depth and taking into account faults mappable in the 3D seismic reflection surveys. Subseismic faults in the Opalinus Clay are small and self-sealing processes ensure low fault transmissivity over safety-relevant timescales. New larger faults are not expected to develop in the disposal area during the time period under consideration, because deformation rates in Northern Switzerland are low and future deformation will preferentially take place along inherited large-scale structures, as observed in the geological history of the area.

The systematic assessment of future fluvial and glacial erosion is based on a detailed recon­struction of the past landscape evolution. The overburden of the Opalinus Clay remains suffi­ciently large over the entire time period under consideration preventing relevant changes in porosity and hydraulic conductivity and ensuring robust self-sealing. The changes in diffusion coefficients will be very limited. Regarding the long-term stability of the engineered barriers, geochemical conditions in the host rock will remain reducing with a neutral pH because of the high buffering capacity of the host rock minerals.

The three investigated siting regions provide a high-quality geological barrier, with the Opalinus Clay comprising comparable properties, located at a suitable depth range and with areas devoid of seismically mappable faults. However, some distinct differences between the siting regions exist. They relate to the thickness of the confining units, the hydrogeological and tectonic situation and resilience regarding future erosion. The low-permeability sequence of host rock and confining units is thickest in NL and thinnest in JO. The porewater composition in the Opalinus Clay in NL is characterised by a larger fraction of old porewater and a smaller overprint by meteoric water compared to the other siting regions, indicating a particularly efficient isolation of the host rock from surface waters. The NL siting region also has the largest area devoid of seismically mappable faults and is most robust to future erosion, mainly because of the greatest emplacement depth.

Key Outcomes for the demonstration of long-term safety and site comparison

The following section highlights the main characteristics of the geological barrier with regard to long-term safety and the key differences between the siting regions Jura Ost (JO), Nördlich Lägern (NL) and Zürich Nordost (ZNO)1. The latter are marked in blue.

  • The large-scale geological setting is favourable:

    In the Swiss context, the siting regions are characterised by low seismic activity and uplift rates. The three siting regions are located away from large-scale tectonic zones of increased geological complexity (Alps, Internal Jura, Upper Rhine Graben, Hegau – Bodensee Graben). In all three siting regions, the host rock Opalinus Clay has overall thicknesses of more than 100 m and occurs at depths that are suitable for repository construction and long-term safety. ► Section 1.4

  • The host rock provides an efficient and robust transport barrier:

    The Opalinus Clay host rock represents the core of the geological barrier. It exhibits excellent and comparable barrier properties in all three siting regions. These are:

    • Very low hydraulic conductivity and, consequently, diffusion-dominated mass transport. ► Sections 5.6, 5.9

    • Host rock thicknesses of ~ 100 to 120 m. ► Section 4.2.6

    • Low variability of the host-rock properties including a consistently high clay-mineral content. ► Sections 4.2.6, 5.2.3

    • Lack of significant preferential flow paths:

      • Fracture frequencies are lower compared to mechanically more competent units. Deformation in the Opalinus Clay is accommodated in a more distributed and dis­continuous manner with soft-linked fault segmentation. ► Sections 4.3.4, 5.5.4

      • Efficient self-sealing in the Opalinus Clay is ensured by the high clay-mineral content (low stiffness and high swelling capacity) and sufficient effective stress (overburden thickness). ► Sections 5.5.2, 5.7

    • High sorption capacity (favouring radionuclide retention) due to the mineral composition (high clay-mineral content) and the corresponding high external surface area. ► Section 5.3.4

    • Stable and favourable geochemical conditions with regard to the stability of the engineered barriers (porewater pH near neutral, reducing conditions, moderate salinity, buffering by mineralogical composition). ► Section 5.4

  • Low-permeability units above and below the host rock complement the transport barrier, resulting in a thick low-permeability zone with diffusion-dominated transport:

    • The low permeability of the units above and below the Opalinus Clay is demonstrated by hydraulic tests. ► Section 4.5.3

    • Compared to the host rock, the confining units are more heterogeneous and include sections with intermediate to low clay-mineral contents with thicknesses of up to a few metres ("hard beds"). In the upper confining units these are less frequent in NL compared to JO and ZNO. Particularly in the eastern part of NL, the units directly overlying the Opalinus Clay have a high clay-mineral content (► Section 4.2.7). Evidence such as the observed low hydraulic conductivities (► Sections 4.5.3, 5.6.3.2), absence of relevant excursions in the tracer profiles (► Section 4.6) and their restricted thicknesses (► Sections 4.2.7.2, 4.5.3.5, 5.6.3.2) suggest that these "hard beds" do not represent signi­ficant flow paths.

    • The 40 m thick, clay-mineral-poor «Herrenwis Unit» in eastern NL is regarded as part of the low-permeability upper confining units, because the observed hydraulic conductivi­ties are low, and the unit is embedded in clay-mineral-rich units. Also, the observed low hydraulic heads indicate that the unit is hydraulically isolated from the regional flow systems. ► Sections 4.2.7.2, 4.5.3.7

    • The distance between the centre of the host rock and the next overlying aquifer is largest in NL and smallest in JO. In NL and ZNO, the upper confining units are bounded by the Malm aquifer, in JO by the Hauptrogenstein aquifer. ► Sections 4.5.3, 4.9

    • The distance between the centre of the host rock and the closest underlying aquifer (Keuper aquifer) delimiting the lower confining units is similar in all the siting regions. However, the Keuper aquifer shows a different appearance in the three siting regions. In ZNO, and also JO, a continuous aquifer seems to be present across the region (Seebi Member and Gansingen Member, respectively). In contrast, in NL, permeable zones are limited to locally occurring sandstone channels in a stratigraphically lower level com­pared to the Seebi and Gansingen Members. Consequently, in NL, units down to the Muschelkalk aquifer could contribute to the barrier function. ► Sections 4.2.3, 4.2.4, 4.5.3, 4.9

  • Independent evidence demonstrates the barrier efficiency of the geological system over very long timescales

    • In all the siting regions, the barrier efficiency is demonstrated by the profiles of natural tracers in porewater, which are best explained by molecular diffusion between the aquifers as the dominant transport mechanism. ► Section 4.6

    • In NL, the isotopic composition of the Opalinus Clay porewater indicates a larger fraction of old porewater and a smaller overprint by meteoric water compared to the other siting regions. ► Sections 4.6.2, 4.9

    • The Malm aquifer bounding the low-permeability units in NL and ZNO represents a quasi-stagnant flow system with old waters, more strongly so in NL. The Hauptrogenstein aquifer, which constitutes the bounding aquifer above the host rock and confining units in JO, represents a slightly more active flow system. The Keuper aquifer is less active in NL compared to the other siting regions. ► Sections 4.5.6, 4.6

  • Areas devoid of seismically mappable faults and with limited tectonic deformation occur in all the siting regions

    • All three siting regions show areas devoid of seismically mappable faults providing flexibility for repository placement and design. Also, along the deep boreholes drilled in the siting regions, long intervals devoid of any fractures were observed within the Opalinus Clay. There is no indication that the Opalinus Clay acted as a décollement hori­zon within the siting regions. ► Sections 4.3.4, 4.3.7

    • In NL, the area free of seismically mappable faults is largest and thus the flexibility regarding repository layout is greatest. ► Sections 4.3.4, 4.3.7

  • The key properties of the host rock are not negatively affected by climatic and geological processes in a relevant way and remain stable over the time period under consideration

    • Recent tectonic deformation rates in Northern Switzerland are small, with a slight north-south shortening (~ 1 – 2.8 m/Myr/km). This pattern is anticipated to continue. Future deformation is expected to result in the reactivation of inherited faults, primarily the regional fault zones. These are taken into account when planning the locations of the disposal areas. If new faults were to develop in the host rock in the future, they are expected to be segmented and short in length and offset. ► Sections 6.2.3, 6.2.4

    • Future erosion (glacial and non-glacial) is expected to be comparable to that observed in the Quaternary, but probably at lower rates (no major drainage reorganisation, smaller glaciers, delay in glacial inception, protection of host rock and confining units by overlying hard-to-erode rocks). ► Section 6.4.3

    • A residual host rock overburden thickness of a minimum of 200 m is considered reliable for efficient self-sealing. The expected evolution of future erosion indicates that this criterion can be safely met for the time period under consideration in NL and ZNO at the position of the provisional disposal area. However, JO is sensitive to less likely scenarios with changing river courses. These may result in overburden thickness < 200 m towards the end of the time period under consideration at the position of the provisional disposal area. ► Sections 6.4.4, 6.4.5

    • The probability of a repository excavation by erosive processes within the next one million years can be considered extremely low in the provisional disposal areas of all siting regions but are about an order of magnitude lower in NL. NL is best protected against future erosion because of the greatest emplacement depth and enhanced resilience to the main erosive processes. ► Sections 6.4.4, 6.4.5

    • Climate change, glaciations, permafrost, erosion and tectonic movements can affect aquifer dynamics, including a shortening of the transport paths along aquifers or increased flow rates. Glacial loading may temporarily lead to overpressures in the host rock and to an increased hydraulic gradient from the host rock towards the aquifers. The effect can be constrained and shown to be not relevant for overall tracer transport. Geochemical conditions will remain reducing and pH neutral because of the buffering capacity of the host rock minerals. ► Section 6.5

    • No relevant dissolution of rock and related development of preferred transport pathways are expected in the host rock because the low hydraulic conductivities are maintained, and because a limited amount of soluble (e.g. carbonate) minerals is disseminated within the clay-mineral-rich rock (► Section 6.5.2.3). Dissolution processes below the host rock are also unlikely to affect the long-term stability because of small driving forces, slow processes and effective self-sealing processes in the host rock. ► Section 6.5.5

Note that the systematic site comparison according to the criteria defined in the Sectoral Plan for Deep Geological Repositories (SFOE 2008) is not part of this report. It is treated in Nagra (2025a) and takes into account the geological information contained in this report. ↩

Die gemäss den behördlichen Anforderungen für die dritte und letzte Etappe des Standortwahl­verfahrens durchgeführten geologischen Arbeiten substantiieren das Wissen zum Aufbau und zur Funktionsweise der geologischen Barriere eines Tiefenlagers. Die für die Standortwahl und den Langzeitsicherheitsnachweis relevanten Aussagen stützen sich auf mehrere unabhängige Argu­mentationslinien und auf eine umfangreiche Datenbasis ab, die unabhängige Mess- und Aus­wertungsmethoden kombiniert. Die Studien bestätigen und unterstreichen die hervorragende Barrierenfunktion des Opalinustons, und untermauern die umfangreichen Erkenntnisse, die in den letzten 30 Jahren in der Nordschweiz und durch Forschungsprojekte im Felslabor Mont Terri gewonnen wurden. Die Ergebnisse sind kompatibel mit weltweiten Erkenntnissen aus diversen Forschungsprojekten und angewandten Projekten (internationale Programme zur Entsorgung radioaktiver Abfälle, Kohlenwasserstoffindustrie, CO2-Sequestrierung, Tunnelbau).

In den drei untersuchten Standortgebieten Jura Ost (JO), Nördlich Lägern (NL) und Zürich Nordost (ZNO) bildet das ca. 100 – 120 m mächtige Wirtgestein Opalinuston die primäre geo­logische Barriere. Sie zeichnet sich durch eine geringe laterale und vertikale Variabilität, einen hohen Tonmineralgehalt (typische Werte ca. 60 Gew.-%), eine sehr geringe hydraulische Leit­fähigkeit und günstige geochemische Bedingungen (hohe Sorptionsfähigkeit, reduzierende Bedingungen) aus. Direkt angrenzende gering durchlässige Rahmengesteine tragen zusätzlich zur Barrierenfunktion bei. Ein unabhängiger Nachweis für die Barrierenwirkung von Wirt- und Rahmengesteinen ergibt sich aus den Profilen der natürlichen Tracer im Porenwasser. Sie zeigen einen sehr langsamen, diffusionsdominierten Stofftransport über Hunderttausende bis Millionen Jahre auf.

Die Beeinträchtigung der Barrierenfunktion durch natürliche Prozesse wird minimiert durch die Platzierung des Tiefenlagers in einer Zone mit subhorizontalen bis leicht geneigten Schichten in genügend grosser Tiefe unter Berücksichtigung der Lage von seismisch kartierbaren tektonischen Störungen. Subseismische Störungen im Opalinuston sind klein und Selbstabdichtungsprozesse sorgen für eine geringe Transmissivität dieser Störungen über sicherheitsrelevante Zeiträume. Die Bildung von neuen, grösseren Störungen wird im Betrachtungszeitraum nicht erwartet, da die Deformationsraten in der Nordschweiz gering sind und zukünftige Deformation, wie in der Vergangenheit, bevorzugt im Bereich der ererbten Grossstrukturen lokalisieren wird.

Die systematische Beurteilung der zukünftigen fluviatilen und glazialen Erosion basiert auf einer detaillierten Rekonstruktion der vergangenen Landschaftsentwicklung. Die Überlagerung des Opalinustons bleibt über den gesamten Betrachtungszeitraum genügend gross, um relevante Veränderungen von Porosität und hydraulischer Durchlässigkeit zu verhindern und eine effektive Selbstabdichtung des Opalinustons sicherzustellen. Die Änderungen der Diffusionskoeffizienten werden sehr begrenzt sein. Wegen der hohen Pufferkapazität der Wirtgesteinsminerale werden die geochemischen Bedingungen im Wirtgestein über den Betrachtungszeitraum reduzierend und pH-neutral bleiben und so zur Langzeitstabilität der technischen Barrieren beitragen.

Alle drei Standortgebiete verfügen über eine hochwertige geologische Barriere. Die Opalinuston-Eigenschaften sind vergleichbar, und es gibt überall geeignete Tiefenbereiche ohne seismisch kartierbare Störungen. Deutliche Unterschiede zwischen den Gebieten betreffen die Mächtigkeit der Rahmengesteine, die hydrogeologische und tektonische Situation sowie die Widerstands­fähigkeit gegenüber zukünftiger Erosion. Die gering durchlässige Abfolge (Wirtgestein und Rahmengesteine) ist in NL am mächtigsten und in JO am dünnsten. Die Porenwasserzusammen­setzung im Opalinuston ist in NL durch einen grösseren Anteil an altem Porenwasser und eine geringere Überprägung durch meteorische Wässer gekennzeichnet, was auf eine besonders effiziente Isolation des Wirtgesteins von Oberflächenwässern hinweist. Das Standortgebiet NL weist zudem die grösste Fläche ohne seismisch kartierbare Störungen auf und ist vor allem wegen der grössten Lagertiefe am besten gegen zukünftige Erosion geschützt.

Schlüsselergebnisse für Langzeitsicherheit und Standortvergleich

Im Folgenden werden die wichtigsten Eigenschaften der geologischen Barriere in Bezug auf die Langzeitsicherheit dargestellt und die wesentlichen Unterschiede zwischen den Standortgebieten Jura Ost (JO), Nördlich Lägern (NL) und Zürich Nordost (ZNO) hervorgehoben2. Letztere sind blau markiert.

  • Die grossräumigen geologischen Verhältnisse sind insgesamt günstig:

    Im Schweizer Kontext sind die drei Standortgebiete durch eine geringe seismische Aktivität und Hebungsrate gekennzeichnet. Sie befinden sich abseits grossräumiger tektonischer Zonen mit erhöhter geologischer Komplexität (Alpen, Interner Jura, Oberrheingraben, Hegau – Bodensee-Graben). In allen drei Standortgebieten weist das Wirtgestein Opalinuston Mächtigkeiten von mehr als 100 m auf und kommt in Tiefen vor, die für den Bau des Tiefenlagers und die Langzeit­sicherheit geeignet sind. ► Kap. 1.5

  • Das Wirtgestein stellt eine effiziente und robuste Transportbarriere dar:

    Das Wirtgestein Opalinuston bildet den Kern der geologischen Barriere. Es weist in allen drei Standortgebieten hervorragende und vergleichbare Barriereneigenschaften auf. Diese sind:

    • Sehr geringe hydraulische Leitfähigkeit und damit diffusionsdominierter Stofftransport. ► Kap. 5.6, 5.9

    • Wirtgesteinsmächtigkeiten von ~ 100 bis 120 m. ► Kap. 4.2.6

    • Eine geringe Variabilität der Wirtgesteinseigenschaften mit einem durchgehend hohen Tonmineralgehalt. ► Kap. 4.2.6, 5.2.3

    • Das Fehlen signifikanter präferenzieller Fliesswege

      • Die Störungsfrequenz ist im Vergleich zu mechanisch kompetenteren Einheiten geringer. Deformation wird im Opalinuston eher verteilt aufgenommen in Form von segmentierten, häufig diskontinuierlichen Bruchflächen. ► Kap. 4.3.4, 5.5.4

      • Eine effiziente Selbstabdichtung im Opalinuston wird durch den hohen Tonmineral­gehalt (geringe Steifigkeit, hohe Quellfähigkeit) und eine ausreichende effektive Spannung (Überlagerungsmächtigkeit) gewährleistet. ► Kap. 5.5.2, 5.7

    • Eine für die Radionuklidrückhaltung günstige, hohe Sorptionskapazität aufgrund der mineralogischen Zusammensetzung mit hohem Tonmineralgehalt und der damit ver­bundenen grossen äusseren Oberfläche. ► Kap. 5.3.4

    • Stabile und günstige geochemische Bedingungen im Hinblick auf die Stabilität der tech­nischen Barrieren (Porenwasser pH-Wert nahe neutral, reduzierende Redoxbedingungen, moderate Salinität, Pufferung durch Mineralogie). ► Kap. 5.4

  • Gering durchlässige Einheiten über und unter dem Wirtgestein ergänzen die Trans­portbarriere und resultieren in einer mächtigen, gering durchlässigen Zone mit diffusionsdominiertem Stofftransport:

    • Die geringe Durchlässigkeit der Einheiten oberhalb und unterhalb des Opalinustons wird durch hydraulische Tests aufgezeigt. ► Kap. 4.5.3

    • Die Rahmengesteine sind im Vergleich zum Wirtgestein heterogener und enthalten Abschnitte mit mittleren bis geringen Tonmineralgehalten, die Mächtigkeiten bis zu einigen Metern erreichen («harte Bänke»). In den oberen Rahmengesteinen treten diese in JO und ZNO häufiger auf als in NL, wo insbesondere im Ostteil die Einheiten direkt über dem Opalinuston sehr tonmineralreich sind (► Kap. 4.2.7. Die beobachteten gerin­gen hydraulischen Durchlässigkeiten (► Kap. 4.5.3, 5.6.3.2), das Fehlen relevanter Anomalien in den Tracerprofilen (► Kap. 4.6) und ihre begrenzten Mächtigkeiten (► Kap. 4.2.7.2, 4.5.3.5, 5.6.3.2) weisen darauf hin, dass diese «harten Bänke» keine signifikanten Fliesswege darstellen.

    • Die 40 m mächtige, tonmineralarme «Herrenwis-Einheit» im Osten von NL wird zu den gering durchlässigen oberen Rahmengesteinen gezählt, weil die beobachteten hydrauli­schen Leitfähigkeiten niedrig sind und die Einheit in tonmineralreiche Einheiten einge­bettet ist. Ausserdem deuten die beobachteten geringen hydraulischen Druckhöhen darauf hin, dass die Einheit hydraulisch von den regionalen Fliesssystemen isoliert ist. ► Kap. 4.2.7.2, 4.5.3.7

    • Der Abstand zwischen dem Zentrum des Wirtgesteins und dem nächsten darüber liegen­den Aquifer ist in NL am grössten und in JO am kleinsten. In NL und ZNO werden die oberen Rahmengesteine durch den Malm-Aquifer, in JO durch den Hauptrogenstein-Aquifer begrenzt. ► Kap. 4.5.3, 4.9

    • Der Abstand zwischen dem Zentrum des Wirtgesteins und dem nächstgelegenen Aquifer (Keuper-Aquifer), der die unteren Rahmengesteine begrenzt, ist in allen Standortgebieten ähnlich. Der Keuper-Aquifer zeigt jedoch in den drei Standort­gebieten ein unter­schiedliches Erscheinungsbild. In ZNO und auch in JO scheint ein durchgehender Aquifer in der gesamten Region vorhanden zu sein (Seebi-Member in ZNO und Gansingen-Member in JO). Im Gegensatz dazu beschränken sich in NL die durchlässigen Zonen auf lokal vorkommende Sandsteinrinnen in einem strati­graphisch tieferen Niveau als das Seebi und das Gansingen-Member. Folglich könnten in NL auch Einheiten bis hinunter zum Muschelkalk-Aquifer zur Barrierenfunktion bei­tragen. ► Kap. 4.2.3, 4.2.4, 4.5.3, 4.9

  • Unabhängige Evidenzen belegen die Barrierenwirkung des geologischen Systems über sehr lange Zeitskalen

    • In allen Standortgebieten wird die Barrierenwirksamkeit durch die Profile natürlicher Tracer im Porenwasser nachgewiesen, die sich am besten durch molekulare Diffusion als dominierenden Transportmechanismus erklären lassen. ► Kap. 4.6

    • Die Isotopenzusammensetzung des Opalinuston-Porenwassers weist in NL auf einen grösseren Anteil von altem Porenwasser und eine geringere Überprägung durch mete­orische Wässer hin als in den anderen Standortgebieten. ► Kap. 4.6.2, 4.9

    • Der Malm-Aquifer, der die gering durchlässigen Einheiten in NL und ZNO begrenzt, stellt ein quasi-stagnierendes Fliesssystem mit alten Wässern dar, in NL noch ausge­prägter. Der Hauptrogenstein-Aquifer, der den begrenzenden Aquifer über dem Wirt­gestein und den Rahmengesteinen in JO darstellt, ist ein etwas aktiveres Fliesssystem. Der Keuper-Aquifer ist in NL im Vergleich zu den anderen Standortgebieten weniger aktiv. ► Kap. 4.5.6, 4.6

  • In allen Standortgebieten gibt es Bereiche ohne seismisch kartierbare Störungen und mit geringer tektonischer Deformation

    • Alle drei Standortgebieten enthalten Bereiche ohne seismisch kartierbare Störungen, was Flexibilität für die Platzierung und Ausgestaltung des Lagers ergibt. Auch in den Tief­bohrungen wurden im Opalinuston lange Intervalle ohne Störungen beobachtet. Es gibt keine Hinweise darauf, dass der Opalinuston in den Standortgebieten als Abscherungs­horizont fungiert. ► Kap. 4.3.4, 4.3.7

    • In NL ist das Gebiet frei von seismisch kartierbaren Störungen am grössten und damit auch die Flexibilität bezüglich Anordnung des Tiefenlagers. ► Kap. 4.3.4, 4.3.7

    • Die Schlüsseleigenschaften des Wirtgesteins werden durch klimatische und geologische Prozesse nicht in relevanter Art und Weise negativ beeinflusst und bleiben über den Betrachtungszeitraum stabil

    • Die rezenten tektonischen Deformationsraten in der Nordschweiz sind gering, mit einer leichten Nord-Süd-Verkürzung (~ 1 – 2.8 m/Myr/km). Es wird erwartet, dass sie lang­fristig in einem ähnlichen Bereich bleibt und dass zukünftige Deformation in erster Linie zur Reaktivierung ererbter Störungen, vor allem der regionalen Störungszonen, führen wird. Deren Lage wird bei der Platzierung der Lagerstollen berücksichtigt. Sollten sich in Zukunft neue Störungen im Wirtgestein entwickeln, so werden diese voraussichtlich segmentiert sein, mit limitierter Ausdehnung und limitiertem Versatz. ► Kap. 6.2.3, 6.2.4

    • Die künftige (glaziale und nicht-glaziale) Erosion dürfte mit der im Quartär beobachteten vergleichbar sein, allerdings wahrscheinlich mit geringeren Raten (keine grössere Umge­staltung des Drainagesystems, kleinere Gletscher, Verzögerung des Beginns der Ver­gletscherungen und Schutz der Wirt- und Rahmengesteine durch darüberliegende schlecht erodierbare Einheiten). ► Kap. 6.4.3

    • Eine Überdeckung des Wirtgesteins von mindestens 200 m Mächtigkeit wird als zuverlässig für eine effiziente Selbstabdichtung angesehen. Die erwartete Entwicklung der zukünftigen Erosion zeigt, dass dieses Kriterium für den betrachteten Zeitraum in NL und ZNO sicher erfüllt werden kann. JO ist vergleichsweise empfindlich gegenüber weniger wahrscheinlichen Szenarien mit veränderten Flussläufen. Diese können gegen Ende des Betrachtungszeitraums beim exemplarischen Lagerfeld zu einer Gesteinsüber­deckung von weniger als 200 m führen. ► Kap. 6.4.4, 6.4.5

    • Die Wahrscheinlichkeit einer Freilegung des Lagers durch erosive Prozesse innerhalb der nächsten Million Jahre ist im Bereich der exemplarischen Lagerfelder in allen Stand­ortgebieten als äusserst gering einzuschätzen, in NL jedoch um eine Grössenordnung geringer. NL ist aufgrund der grössten Einlagerungstiefe und der erhöhten Widerstands­fähigkeit gegenüber den wichtigsten Erosionsprozessen am besten gegen zukünftige Erosion geschützt. ► Kap. 6.4.4, 6.4.5

    • Klimawandel, Vergletscherung, Permafrost, Erosion und tektonische Bewegungen können sich auf die Dynamik der Tiefenaquifere auswirken einschliesslich einer Verkür­zung der Transportwege zu den Exfiltrationsgebieten und/oder erhöhter Fliess­geschwin­digkeiten. Gletscherbelastungen können vorübergehend zu Überdrücken im Wirtgestein und dadurch zu einem vorübergehend erhöhten hydraulischen Gradienten in Richtung der Aquifere führen. Diese können eingegrenzt werden und sind für den Tracer­transport nicht relevant. Die geochemischen Bedingungen bleiben aufgrund der Puffer­kapazität der Wirtgesteinsminerale reduzierend und pH-neutral. ► Kap. 6.5

    • Es wird keine relevante Gesteinslösung und damit verbundene Entwicklung bevorzugter Transportwege im Wirtgestein erwartet, da die niedrigen hydraulischen Leitfähigkeiten beibehalten werden und die begrenzte Menge löslicher (z. B. karbonatischer) Minerale innerhalb des tonmineralreichen Gesteins verteilt ist (► Kap. 6.5.2.3). Auch Lösungs­prozesse unterhalb des Wirtgesteins werden die Langzeitstabilität nicht beeinträchtigen, da die treibenden Kräfte gering sind, die Prozesse langsam ablaufen und das Wirtgestein eine hohes Selbstabdichtungsvermögen aufweist. ► Kap. 6.5.5

Der systematische Standortvergleich gemäss den im Sachplan geologische Tiefen­lager (BFE 2008) definierten Kriterien ist nicht Teil dieses Berichts. Er wird in Nagra (2025a) behandelt und berücksichtigt die in diesem Bericht enthaltenen geologischen Informationen. ↩

Table of Contents

1. Introduction

1.1 Context

1.2 Purpose and scope of the present report

1.3 Structure of the report and ways to read it

1.4 Geological barrier: Function and required geological input for site selection and demonstration of long-term safety

1.4.1 Safety concept

1.4.2 Site selection

1.4.3 Characteristics of the geological barrier as input for site selection and demonstration of long-term safety

1.5 Why the Opalinus Clay in Northern Switzerland?

2. Overview of geological investigations with relevance for siting and demonstration of post-closure safety

2.1 Overview

2.2 Reflection seismic data

2.3 Deep boreholes

2.4 Investigation programme related to Quaternary deposits

2.5 Long-term monitoring systems

2.6 Investigations in the Mont Terri rock laboratory

2.7 International experience with clay-rich rocks

3. Geological evolution of Northern Switzerland

3.1 Overview

3.2 Paleozoic

3.3 Mesozoic

3.3.1 Triassic

3.3.2 Jurassic

3.3.2.1 Early Jurassic

3.3.2.2 Middle Jurassic

3.3.2.3 Late Jurassic

3.3.3 Cretaceous

3.4 Paleogene and Neogene

3.4.1 Paleocene

3.4.2 Eocene

3.4.3 Oligocene

3.4.4 Miocene

3.4.5 Pliocene

3.5 Quaternary

3.6 Present-day geodynamic situation

4. Detailed geological framework

4.1 Introduction

4.2 Sedimentology and stratigraphy

4.2.1 Overview

4.2.2 Schinznach Formation

4.2.2.1 Introduction

4.2.2.2 Facies and lithostratigraphy

4.2.2.3 Variability

4.2.2.4 Chronology

4.2.2.5 Depositional evolution

4.2.3 Bänkerjoch Formation

4.2.3.1 Introduction

4.2.3.2 Facies and lithostratigraphy

4.2.3.3 Variability

4.2.3.4 Chronology

4.2.3.5 Depositional evolution

4.2.4 Klettgau Formation

4.2.4.1 Introduction

4.2.4.2 Facies and lithostratigraphy

4.2.4.3 Variability

4.2.4.4 Chronology

4.2.4.5 Depositional evolution

4.2.5 Staffelegg Formation

4.2.5.1 Introduction

4.2.5.2 Facies and lithostratigraphy

4.2.5.3 Variability

4.2.5.4 Chronology

4.2.5.5 Depositional evolution

4.2.6 The Opalinus Clay

4.2.6.1 Introduction

4.2.6.2 Facies and lithostratigraphy

4.2.6.3 Variability

4.2.6.4 Depositional evolution

4.2.7 Dogger Group above Opalinus Clay

4.2.7.1 Introduction

4.2.7.2 Facies and lithostratigraphy

4.2.7.3 Variability

4.2.7.4 Chronology

4.2.7.5 Depositional evolution

4.2.8  Wildegg Formation

4.2.8.1 Introduction

4.2.8.2  Facies and lithostratigraphy

4.2.8.3 Variability

4.2.8.4 Chronology

4.2.8.5  Depositional evolution

4.2.9 Malm Group above Wildegg Formation

4.2.9.1 Introduction

4.2.9.2 Facies and lithostratigraphy

4.2.9.3 Variability

4.2.9.4 Chronology

4.2.9.5 Depositional evolution

4.2.10 Conclusions

4.3  Tectonic setting

4.3.1 Overview

4.3.2 Terminology of structures

4.3.3 Tectonic situation of Northern Switzerland

4.3.4 Structural inventory in the siting regions

4.3.5 Detailed tectonic and burial temperature evolution since the Early Jurassic

4.3.6 Deformational style and tectonic domains

4.3.7 Conclusions

4.4 Current stress field

4.4.1 Overview

4.4.2 Stress orientations

4.4.3 Stress magnitudes and stress regime

4.4.4 3D geomechanical-numerical models of the siting regions

4.4.5 Conclusions

4.5 Hydrogeology and hydrogeochemistry

4.5.1 Overview

4.5.2 Regional hydrogeological situation

4.5.3  Hydrostratigraphy

4.5.3.1 Introduction

4.5.3.2 Overview

4.5.3.3 Malm aquifer

4.5.3.4 Wildegg Formation

4.5.3.5  Clay-mineral-rich aquitard units above the Opalinus Clay (Dogger Group)

4.5.3.6 Hauptrogenstein aquifer

4.5.3.7 «Herrenwis Unit»

4.5.3.8 Opalinus Clay

4.5.3.9  Lias Group and uppermost Keuper

4.5.3.10 Keuper aquifer

4.5.3.11 Bänkerjoch Formation

4.5.3.12 Muschelkalk aquifer

4.5.4 Analysis of the flow system based on the regional hydrodynamic model

4.5.4.1 Model description

4.5.4.2 Malm aquifer

4.5.4.3 Hauptrogenstein aquifer

4.5.4.4 Keuper aquifer

4.5.4.5 Muschelkalk aquifer

4.5.4.6  Differences in hydraulic heads between the aquifers

4.5.5 Hydrogeochemistry of deep groundwaters

4.5.5.1 Introduction

4.5.5.2 Malm aquifer

4.5.5.3 Hauptrogenstein aquifer including Birmenstorf Member

4.5.5.4  Keuper aquifer

4.5.5.5  Muschelkalk aquifer

4.5.5.6 Cross-formation flow

4.5.6 Concluding summary hydrogeology

4.6 Solute transport in the host rock and confining units demonstrated by the profiles of natural tracers

4.6.1 Overview

4.6.2 Profiles of stable isotopes of water

4.6.3 Chloride profiles and Br/Cl ion ratios

4.6.4 Profiles of helium in porewater

4.6.5 Concluding summary of natural tracer profiles

4.7 Palaeo-fluid flow reconstructed by geochemical investigations of secondary mineralisations

4.7.1 Overview

4.7.2 Approach, methodology and limitations

4.7.3 Investigated structures and inventory of mineralisations

4.7.4 Results of geochemical investigations of vein calcite

4.7.5 Results of geochemical investigations of vein celestite

4.7.6 Implications for palaeo-transport processes and distances

4.8 Current temperature conditions

4.9 Detailed geological framework: Summary

5. Key characteristics of the host rock and clay-mineral-rich confining units as geological barriers

5.1 Introduction

5.2 Lithology and mineralogy

5.2.1 Overview

5.2.2 Lithology and structure of the Opalinus Clay from microscopic to formation scale

5.2.3 Whole-rock mineralogy

5.2.4 Composition of the clay-mineral fraction

5.2.5 Trace and diagenetic minerals

5.2.6 Conclusions

5.3 Porosity

5.3.1 Overview

5.3.2 Porosity profile

5.3.3 Correlation of porosity with other rock properties

5.3.4  Pore-size distribution and external surface area

5.3.5 Conclusions

5.4 Porewater chemistry (geochemical conditions)

5.4.1 Overview

5.4.2 Solute distribution in the pore space

5.4.3 Porewater composition in the Opalinus Clay and the confining units

5.4.4 Reference porewaters for the Opalinus Clay

5.4.5 Extrapolating from standard conditions to in-situ temperature and pressure

5.4.6 Geochemical stability and buffering capacity of the Opalinus Clay

5.4.7 Conclusions

5.5 Geomechanical behaviour and tectonic overprint

5.5.1 Overview

5.5.2  Volumetric deformation behaviour

5.5.3 Shear deformation behaviour

5.5.4 Tectonic deformation and fault architecture in the Opalinus Clay

5.5.5 Conclusions

5.6 Hydraulic properties and hydraulic heads

5.6.1 Overview

5.6.2 Small-scale properties from lab tests

5.6.3 Rock mass scale properties from in-situ hydraulic tests

5.6.3.1 Opalinus Clay

5.6.3.2 Confining units

5.6.4 Observations in tunnels

5.6.5 Profiles of formation hydraulic heads

5.6.6 Conclusions

5.7 Self-sealing of fractures

5.7.1 Overview

5.7.2 Empirical evidence

5.7.3 Relevant processes and mechanisms

5.7.4 Importance of effective stress for robust self-sealing

5.7.5 Influence of other factors on the self-sealing potential

5.7.6 Relevance of veins for self-sealing potential

5.7.7 Conclusions

5.8 Diffusion properties

5.8.1 Overview

5.8.2 Diffusion properties at the laboratory scale (HTO and chloride)

5.8.3 Diffusion at the underground rock laboratory scale

5.8.4 Relevance at formation scale

5.8.5 Comparison with data from other clay-rich rocks

5.8.6 Conclusions regarding diffusion

5.9 Dominant transport mechanisms in the Opalinus Clay

5.10 Overall conclusions on key characteristics of the host rock and confining units

6. Long-term geological evolution

6.1 Introduction

6.1.1 Aim and content of this chapter

6.1.2 Overview of the principal geological processes potentially affecting the geological barrier

6.2 Geodynamic evolution

6.2.1 Large-scale geodynamic framework

6.2.2 Uplift and subsidence domains along the route of the Rhine River

6.2.3 Present-day horizontal crustal movements in Northern Switzerland

6.2.4 Proposed tectonic evolution with respect to faulting

6.2.5 Conclusions

6.3 Climate evolution

6.3.1  Climate during the Quaternary

6.3.1.1 Global Quaternary climate

6.3.1.2 Past climate conditions in Northern Switzerland

6.3.2 Glacier development and erosion potential in Northern Switzerland

6.3.3 Future climate evolution

6.3.3.1 Timing of future glaciations

6.3.3.2  Future climate characteristics during interglacials

6.3.4 Conclusions

6.4  Erosion

6.4.1 Key erosion processes and resulting landscape characteristics of Northern Switzerland

6.4.1.1 Erosion processes and landscape compartmentalisation

6.4.1.2 Fluvial incision

6.4.1.3 Evolution of local topography

6.4.1.4 Deep glacial erosion

6.4.2  From past to future erosion

6.4.2.1 Interpretation of present landscape characteristics in the siting regions

6.4.2.2 Site-specific constraints with respect to future erosion assessment

6.4.2.3  Approach to assessing future erosion

6.4.3 Future erosion processes and rates

6.4.3.1  Future fluvial incision

6.4.3.2 Future evolution of local topography

6.4.3.3 Future deep glacial erosion

6.4.4 Remaining overburden thickness and potential for repository excavation

6.4.5 Conclusions

6.5 Long-term hydrogeological and hydrogeochemical evolution

6.5.1 Changes in deep aquifer flow systems

6.5.1.1 Variations in groundwater recharge as a result of climate change

6.5.1.2 Changes due to erosion and changing morphology

6.5.1.3 Changes related to glaciations and permafrost

6.5.1.4 Changes in deep aquifer flow systems due to neotectonic activity

6.5.2 Changes regarding the hydraulic barrier efficiency of the Opalinus Clay and confining units

6.5.2.1 Change of porewater pressure and hydraulic gradient

6.5.2.2 Change in hydraulic conductivity due to reduction of overburden thickness

6.5.2.3 Changes of hydraulic conductivity due to dissolution processes in host rock and confining units

6.5.3 Change in diffusion properties of the host rock due to reduction of the overburden

6.5.4 Alteration of porewater composition by diffusive exchange with aquifers and effects on radionuclide mobility

6.5.5 Dissolution processes below the host rock

6.5.6 Alteration of host rock mineralogy

6.5.7 Conclusions on long-term hydrogeological and hydrogeochemical evolution

6.6 Long-term geological evolution: Summary

6.6.1 General conclusions regarding the long-term geological evolution

6.6.2 Storyboard for the expected long-term geological evolution in Nördlich Lägern

7. Conclusions

7.1 Developments of the knowledge base and key learnings compared to previous investigation phases

7.2 Overall conclusions regarding site comparison and demonstration of post-closure safety

8. References

List of Figures

Fig. 1‑1: Positioning of this report, NTB 24-17 ("Geosynthesis"), in relation to key reports for site selection and demonstration of post-closure safety and to supplementary geo­logical reports

Fig. 1‑2: Criteria to be used for site selection (SFOE 2008)

Fig. 1‑3: Key aspects used for selecting the location of the Jura Ost (JO), Nördlich Lägern (NL) and Zürich Nordost (ZNO) siting regions in Northern Switzerland

Fig. 2‑1: Schematic overview of important sources of information for the characterisation of the geological barrier

Fig. 2‑2: Important geophysical datasets and boreholes in Northern Switzerland

Fig. 2‑3: Increase in size of the database for key parameters during the 2019 – 2022 deep drilling campaign

Fig. 3‑1: Visualisation of the structure of the chapter

Fig. 3‑2: Simplified tectono-geological map of Northern Switzerland with a profile between the Aar Massif and the Black Forest Massif

Fig. 3‑3: Stratigraphic column, geological map and profile of Northern Switzerland

Fig. 3‑4: Timeline focusing on the geological evolution of Northern Switzerland

Fig. 3‑5: Palaeogeographic reconstruction showing Switzerland in the larger context

Fig. 3‑6: Geological evolution of the study area demonstrated on a schematic NNW-SSE cross-section

Fig. 3‑7: Palaeogeographic situation of Western to Central Europe in the Norian during the sedimentation of the Klettgau Formation (Seebi Member) and its time equivalents

Fig. 3‑8: Palaeogeographic situation of Western to Central Europe in the Aalenian during the sedimentation of the Opalinus Clay and its time equivalents

Fig. 3‑9: Palaeogeographic situation of Western to Central Europe in the Bajocian during the sedimentation of the Hauptrogenstein and «Parkinsoni-Württembergica-Schichten» and their time equivalents

Fig. 3‑10: Palaeogeographic situation of Western to Central Europe in the Kimmeridgian during the sedimentation of the Burghorn Formation, «Felsenkalke» and «Massen­kalk» and their time equivalents

Fig. 3‑11: Main landscape-forming events in Northern Switzerland during the past 5 Myr

Fig. 3‑12: Present-day geodetic movements relative to Eurasia

Fig. 4‑2: Lithological overview correlation with the focus on Mesozoic sedimentary rocks of the three siting regions

Fig. 4‑3: Schematic representation of depositional environments of Mesozoic sedimentary rocks in Northern Switzerland

Fig. 4‑4: Schematic lithostratigraphic column for JO with depositional environments, schematic sedimentation rates and estimated location relative to sea level

Fig. 4‑5: Schematic lithostratigraphic column for NL with depositional environments, schematic sedimentation rates and estimated location relative to sea level

Fig. 4‑6: Schematic lithostratigraphic column for ZNO with depositional environments, schematic sedimentation rates and estimated location relative to sea level

Fig. 4‑7: Map of depositional environments during the Middle Triassic (Anisian – Ladinian) preserved in the Schinznach Formation

Fig. 4‑8: Stratigraphic borehole correlation of the Schinznach Formation

Fig. 4‑9: Selected core photos of the Schinznach Formation

Fig. 4‑10: Map of depositional environments during the Middle Triassic (Late Ladinian – Early Carnian) preserved in the Bänkerjoch Formation

Fig. 4‑11: Stratigraphic borehole correlation of the Bänkerjoch Formation

Fig. 4‑12: Selected core photos of the Bänkerjoch Formation

Fig. 4‑13: Map of depositional environments during the Late Triassic (Carnian to Rhaetian) preserved in the Klettgau Formation

Fig. 4‑14: Schematic synoptic section of the Klettgau Formation with its different members

Fig. 4‑15: Stratigraphic borehole correlation of the Klettgau Formation

Fig. 4‑16: Selected core photos of the Klettgau Formation

Fig. 4‑17: Map of depositional environments during the Late Triassic (Middle Carnian) preserved in the Ergolz Member of the Klettgau Formation

Fig. 4‑18: Microfacies of porous dolostone and sandstone with argillaceous matrix and open pores

Fig. 4‑19: «Channel facies» intercalated with «floodplain facies» in the Ergolz Member at Steigrabe in Hemmiken

Fig. 4‑20: Map of depositional environments during the Late Triassic (Late Carnian) preserved in the Gansingen and Berlingen Members of the Klettgau Formation

Fig. 4‑21: Map of depositional environments during the Late Triassic (Norian) preserved in the Seebi Member of the Klettgau Formation and its western equivalent (part of the Gruhalde Member of the Klettgau Formation)

Fig. 4‑22: Map of depositional environments during the Early Jurassic (Hettangian to Toarcian) preserved in the Staffelegg Formation

Fig. 4‑23: Stratigraphic borehole correlation of the Staffelegg Formation

Fig. 4‑24: Selected core photos of the Staffelegg Formation (slabbed cores)

Fig. 4‑25: Outcrop of the Staffelegg Formation in the Frick Gruhalde clay pit

Fig. 4‑26: Map of depositional environments during the Hettangian to Sinemurian preserved in the Beggingen and Weissenstein Members and part of the Herdern Member

Fig. 4‑27: Map of depositional environment during the Middle Jurassic (mainly Early Aalenian) preserved in the Opalinus Clay

Fig. 4‑28: Stratigraphic borehole correlation of the Opalinus Clay

Fig. 4‑29: Selected core photos of the Opalinus Clay (slabbed cores)

Fig. 4‑30: Subfacies classification and lithologies of the Opalinus Clay and adjacent formations in boreholes of Northern Switzerland

Fig. 4‑31: Block diagrams showing depositional models of the Opalinus Clay in Northern Switzerland

Fig. 4‑32: Map of depositional environments during the Middle Jurassic (Middle Aalenian to Early Oxfordian) preserved in the Dogger Group above Opalinus Clay

Fig. 4‑33: Stratigraphic borehole correlation of the units of the Dogger Group above Opalinus Clay

Fig. 4‑34: Stratigraphy of the Middle Jurassic of Northern Switzerland and the correlation with neighbouring Southern Germany

Fig. 4‑35: Biostratigraphy and lithostratigraphy of the Middle Jurassic (Aalenian to Bathonian) of Northern Switzerland with sequence stratigraphic correlation

Fig. 4‑36: Selected core photos of the Dogger Group above Opalinus Clay (slabbed cores)

Fig. 4‑37: Detailed correlation of the sedimentary succession directly above the Opalinus Clay in boreholes of JO

Fig. 4‑38: Detailed correlation of the sedimentary succession directly above the Opalinus Clay in boreholes of NL

Fig. 4‑39: Detailed correlation of the sedimentary succession directly above the Opalinus Clay in boreholes of ZNO

Fig. 4‑40: Subcrop map (top reflection of the «Herrenwis Unit») of the geophysical survey area acquired in NL with seismically derived extent of the isolated carbonate platform and of the periplatform wedge

Fig. 4‑41: E-W-oriented seismic profile across the western edge of the «Herrenwis Unit» and conceptual sketch of the extent of the «Herrenwis Unit» and adjacent units

Fig. 4‑42: Map of depositional environments during Middle Aalenian

Fig. 4‑43: Map of depositional environments during late Middle Aalenian to Early Bajocian

Fig. 4‑44: Map of depositional environments during the Early Bajocian

Fig. 4‑45: Bioherms at two levels (Calcaire à polypiers inférieur et supérieur) shown as a time-equivalent analogue for the bioherms of the «Herrenwis Unit»

Fig. 4‑46: Map of depositional environments during Late Bajocian to Early Oxfordian

Fig. 4‑47: Map of depositional environment during the Late Jurassic (Middle to Late Oxfordian) preserved in the Wildegg Formation

Fig. 4‑48: Stratigraphic borehole correlation of the Wildegg Formation

Fig. 4‑49: Selected core photos of the Wildegg Formation

Fig. 4‑50: Map of depositional environments during the Late Jurassic (Late Oxfordian to Early Tithonian) preserved in the Malm Group above Wildegg Formation

Fig. 4‑51: Stratigraphic borehole correlation of the Malm Group above Wildegg Formation

Fig. 4‑52: Selected core photos of the Malm Group above Wildegg Formation

Fig. 4‑53: Conceptual block diagram showing fault terminology across the observation scales

Fig. 4‑54: Geological map of Northern Switzerland with the siting regions and major faults

Fig. 4‑55: Conceptual tectonic map at top basement showing the main faults and the extent of the Konstanz – Frick Trough

Fig. 4‑56: Large-scale geological cross-section through Jura Ost

Fig. 4‑57: Large-scale geological cross-section through Nördlich Lägern

Fig. 4‑58: NNW-SSE large-scale geological cross-section through Zürich Nordost

Fig. 4‑59: WSW-ENE large-scale geological cross-section through Zürich Nordost

Fig. 4‑60: Tectonic map of Northern Switzerland showing regional fault zones and regional tectonic domains

Fig. 4‑61: Fault map for JO (shown on three stratigraphic levels) and fracture frequencies in the recent deep boreholes

Fig. 4‑62: NW-SE cross-section in time domain extracted from 3D seismic reflection data through Jura Ost

Fig. 4‑63: Cross-section extracted from 3D seismic reflection data showing the Effingen Fault

Fig. 4‑64: 3D view showing the less deformed block in NL between the regional fault zones

Fig. 4‑65: Fault maps for NL (shown on three stratigraphic levels) and fracture frequencies in the recent deep boreholes

Fig. 4‑66: N-S cross-section in time domain through the 3D seismic reflection data across NL

Fig. 4‑67: Focused view in time domain showing interpreted fault geometries in the Baden – Irchel – Herdern Lineament

Fig. 4‑68: Focused view in time domain showing the relationship of thrusting in the Siglistorf Anticline and the underlying faults in the Paleozoic strata

Fig. 4‑69: Fault map for ZNO (shown on three stratigraphic levels) and fracture frequencies in the recent deep boreholes

Fig. 4‑70: 2D seismic reflection line extracted from 3D seismic reflection data across major structures in ZNO

Fig. 4‑71: 2D seismic reflection showing high-angle faults in the "Strukturzone von Niderholz"

Fig. 4‑72: Rheinau Fault in a 2D seismic reflection line oriented parallel to the borehole path

Fig. 4‑73: Evolution of burial temperature and oxygen isotope composition of pore fluids (δ O fluid ) since the Early Jurassic

Fig. 4‑74: Simplified tectonic map of Northern Switzerland showing absolute ages obtained from veins sampled in outcrops and drill cores and shortening estimates

Fig. 4‑75: Tectonic map of Northern Switzerland showing the influence of the neighbouring tectonic domains

Fig. 4‑76: Orientation of maximum horizontal stress S Hmax in the siting regions

Fig. 4‑77: Stress magnitudes and comparison to clay-mineral content (proxy for layer stiffness)

Fig. 4‑78: Control of mechanical layering on stress magnitude data

Fig. 4‑79: Conceptual sketch of the evolution of the horizontal stress magnitude S h in a mechanically layered limestone – claystone sequence

Fig. 4‑80: Compilation of stress magnitude data in the Opalinus Clay across siting regions

Fig. 4‑81: Stress magnitude data from MHF/SR tests and modelled stress bandwidth

Fig. 4‑82: Comparison of stress regimes within the rock formations across the different siting regions

Fig. 4‑83: Aquifer outcrops, river network, regional fault zones and potential recharge and discharge areas relevant for the siting regions

Fig. 4‑84: Hydrostratigraphic units of Northern Switzerland

Fig. 4‑85: Hydrogeological correlation of key boreholes with summarised results of hydraulic packer tests and location of regional and local deep aquifers

Fig. 4‑86: Histogram of the transmissivities measured in the aquifers

Fig. 4‑87: Drill core pictures from the hydraulic test interval in the «Felsenkalke» and «Massenkalk» of the BUL1 borehole

Fig. 4‑88: Hydraulic conductivities from in-situ hydraulic tests in the Malm aquifer in Northern Switzerland and Southern Germany

Fig. 4‑89: Profile of the Wedelsandstein Formation in the TRU1 borehole: mineralogical composition, porosity, structural inventory and hydraulic conductivity

Fig. 4‑90: «Herrenwis Unit» of the BUL1 borehole: CT-scan-based visualisation of mainly calcareous and clay-mineral-rich zones and macropores

Fig. 4‑91: Hydraulic heads in the «Herrenwis Unit» observed by packer testing and comparison with data from the long-term monitoring system (LTM) in STA3

Fig. 4‑92: Hydraulic conductivity from in-situ hydraulic packer tests in the «Herrenwis Unit»

Fig. 4‑93: Results of in-situ hydraulic packer tests in the Staffelegg Formation and comparison to values from laboratory tests on drill cores

Fig. 4‑94: Results of the hydraulic packer testing and hydrogeochemical investigations in the Klettgau Formation

Fig. 4‑95: Hydrogeological synopsis of the Keuper aquifer indicating the permeable litho­facies of the Klettgau Formation in the different siting regions

Fig. 4‑96: Hydraulic conductivities from in-situ hydraulic tests in the Muschelkalk aquifer in Northern Switzerland and Southern Germany

Fig. 4‑97: 3D view of the northeastern part of the hydrogeological model, with respective cross-sections showing the main regional aquifers, together with the Opalinus Clay

Fig. 4‑98: Simulated hydraulic heads and the particle paths identifying recharge and discharge areas in the Malm aquifer

Fig. 4‑99: Head difference map between the Malm aquifer and the Lower Freshwater Molasse Group (USM)

Fig. 4‑100: Simulated hydraulic heads and particle paths identifying recharge and discharge areas in the Hauptrogenstein aquifer

Fig. 4‑101: Simulated hydraulic heads and particle tracking in the Keuper aquifer identifying recharge and discharge areas for the base case (upper figure) and alternative homo­geneous isotropic case (lower figure)

Fig. 4‑102: Simulated hydraulic heads and particle tracking identifying recharge and discharge areas in the Muschelkalk aquifer

Fig. 4‑103: Difference in hydraulic heads between aquifers above and below the Opalinus Clay

Fig. 4‑104: Cross-plots illustrating the behaviour of key hydrogeochemical parameters in groundwaters collected from the Malm (closed symbols) and Molasse aquifers (open symbols) in Northern Switzerland and Southern Germany

Fig. 4‑105: Map showing the spatial distribution of δ O values in groundwaters collected from the Malm aquifer as an indication for the origin of the different water types

Fig. 4‑106: Correlations between values of stable isotopes of water and Cl concentrations as well as Kr model ages of Na-Cl type Malm groundwaters collected in the ZNO and NL siting regions

Fig. 4‑107: Map showing the spatial distribution of the δ O values of the Malm groundwaters as an indication for dilution of the modified seawater component with meteoric water

Fig. 4‑108: Map showing the spatial distribution of δ O values in groundwaters collected from the Hauptrogenstein aquifer and the overlying Birmenstorf Member in Northern Switzerland

Fig. 4‑109: Cross-plots illustrating the behaviour of key hydrogeochemical parameters in groundwaters collected from the Hauptrogenstein aquifer in Northern Switzerland

Fig. 4‑110: Cross-plots illustrating the behaviour of key hydrogeochemical parameters in groundwaters collected from the Keuper aquifer in Northern Switzerland

Fig. 4‑111: Map showing the spatial distribution of δ O values in groundwaters collected from the Keuper aquifer as indication of the recharge conditions of the different water types

Fig. 4‑112: Cross-plots illustrating the behaviour of key hydrogeochemical parameters in groundwaters collected from the Muschelkalk aquifer in Northern Switzerland and Southern Germany

Fig. 4‑113: Map showing the spatial distribution of δ O values in groundwaters collected from the Muschelkalk aquifer as indication of the recharge conditions of the different water types

Fig. 4‑114: Correlations between δ O values and selected other parameters of Muschelkalk groundwaters collected in the siting regions as well as comparison to a potential endmember of the mixing trend (WEI, crystalline)

Fig. 4‑115: Sketch illustrating the upwelling of groundwater from the crystalline basement into the Muschelkalk aquifer along regional fault zones some 8 – 13 Myr ago

Fig. 4‑116: Map showing the distribution of the δ O values in groundwaters of the Muschelkalk aquifer as manifestation of the regional groundwater flow system in the ZNO and NL siting regions

Fig. 4‑117: Chloride concentrations and Kr model ages in groundwater collected from bore­holes in the three siting regions

Fig. 4‑118: Illustration of possible evolution of tracer profiles across an aquitard sequence driven by concentration changes in two or more bounding aquifers

Fig. 4‑119: Profiles of δ H (top row) and δ O (bottom row) in porewater (pw) and groundwater (gw) in the different siting regions

Fig. 4‑120: Comparison of profiles of δ H (a) and δ O (b) in porewater (pw) and groundwater (gw) of the different geological siting regions

Fig. 4‑121: Signatures of stable water isotopes for BOZ2, STA2 and TRU1 (all influenced by Keuper groundwater) as well as for STA3 (no Keuper groundwater)

Fig. 4‑122: Signatures of stable isotopes in porewater of the Opalinus Clay in the different siting regions

Fig. 4‑123: Comparison of measured and simulated profiles of stable water isotopes in BOZ2, STA2, STA3 and TRU1

Fig. 4‑124: Profiles of chloride (top row) and Br/Cl ratios (bottom row; grey vertical lines indicate seawater ratio) in porewater of the different bore­holes

Fig. 4‑125: Comparison of measured and simulated profiles of chloride (top row) and of the Br/Cl ratio (bottom row; grey vertical lines indicate seawater ratio) at BOZ2, STA2, STA3 and TRU1

Fig. 4‑126: Profiles of He concentrations and He/ He ratios in porewater (pw) and groundwater (gw) for the BOZ2 and BOZ1 (JO), STA3 and BUL1 (NL) and MAR1 and TRU1 (ZNO) boreholes

Fig. 4‑127: Examples of veins from the TBO boreholes

Fig. 4‑128: Mineralised structures in the Opalinus Clay and other Mesozoic units

Fig. 4‑129: Evolution of δ O of calcite-forming fluids over the last 70 Ma as obtained from coupled clumped isotope thermometry and U-Pb and U-Th dating of calcite cements

Fig. 4‑130: Depth profiles of the oxygen isotope composition of calcite-forming fluids derived from clumped isotope thermometry for different time periods

Fig. 4‑131: Temperature and δ O values of calcite-forming fluids from clumped isotope thermometry

Fig. 4‑132: Depth profiles of the carbon isotope composition of vein calcite and matrix carbonate

Fig. 4‑133: Depth profiles of strontium isotope ratios of vein calcite, vein celestite and present-day porewater

Fig. 4‑134: δ O and δ S values for vein celestite observed in boreholes in Northern Switzerland

Fig. 4‑135: Temperature profiles and lithology-dependent temperature gradients

Fig. 4‑136: Cross-plots of temperature (°C) vs. depth below surface (m) for the Malm aquifer, Opalinus Clay and Muschelkalk aquifer

Fig. 4‑137: Key observations between Muschelkalk and Hauptrogenstein aquifers in JO

Fig. 4‑138: Key observations between Muschelkalk and Malm aquifers in NL

Fig. 4‑139: Key observations between Muschelkalk and Malm aquifers in ZNO

Fig. 4‑140: Extent of host rock and low-permeability confining units and location of neigh­bouring aquifers for the JO, NL and ZNO siting regions

Fig. 5‑1: Coupling between structure, deformation behaviour and transport properties in the Opalinus Clay

Fig. 5‑2: Conceptual representation of the structure of the Opalinus Clay over a length scale range of 13 orders of magnitude

Fig. 5‑3: Mineralogical composition of formations in boreholes of the siting regions

Fig. 5‑4: Clay-mineral content of the Opalinus Clay in boreholes of the siting regions, based on laboratory data

Fig. 5‑5: Mineralogical composition of the Opalinus Clay based on laboratory data from X‑ray diffraction

Fig. 5‑6: Composition of the clay-mineral fraction in the TBO boreholes in profile view

Fig. 5‑7: Diagenetic minerals and their relative temporal sequence of precipitation in the Opalinus Clay and its confining units in Northern Switzerland

Fig. 5‑8: Porosity profiles from selected boreholes in the siting regions

Fig. 5‑9: Water-loss porosity of the Opalinus Clay

Fig. 5‑10: Water-loss porosity of the Opalinus Clay in different boreholes as a function of current depth

Fig. 5‑11: Relationship between clay-mineral content and porosity in the Jurassic section

Fig. 5‑12: Conceptual view of the porosity types (white) in clay-carbonate mixtures

Fig. 5‑13: Key rock data for Jurassic samples from TBO boreholes shown in the Füchtbauer triangle

Fig. 5‑14: Water-loss porosity of the Opalinus Clay as a function of clay-mineral content and comparison to other clay-rich rocks

Fig. 5‑15: Mineral surface areas and pore-size distributions in the Jurassic profile

Fig. 5‑16: Correlation between external surface area and cation-exchange capacity based on Cs consumption

Fig. 5‑17: Conceptual model of anion-accessible porosity (white), anion-depleted porosity (blue), cations, anions, neutral species (+, -, 0, in dark blue) and the negative charge on clay mineral surfaces (red)

Fig. 5‑18: Chloride-accessible porosity fraction ( fCl )

Fig. 5‑19: Schoeller plots visualising the chemical composition of porewater in the Opalinus Clay and in the adjacent confining units in the three siting regions

Fig. 5‑20: Modelled concentrations of main porewater components (upper panel) as well as log(pCO2) (bar) and pH (lower panel) as a function of temperature using an alter­native porewater model including clay mineral phases (curves)

Fig. 5‑21: Comparison of oedometric curves of the Opalinus Clay from Mont Terri and BUL1

Fig. 5‑22: Swelling index (Cs) as a function of the clay-mineral content

Fig. 5‑23: Axial swelling strain in the Opalinus Clay constrained by different methods

Fig. 5‑24: Schematic of the mechanical response of the Opalinus Clay for different stress paths

Fig. 5‑25: Different mechanical response of Mesozoic sedimentary rocks with contrasting clay-mineral contents

Fig. 5‑26: Shear strength of the Opalinus Clay from the siting regions

Fig. 5‑27: Peak and post-peak strength of the Opalinus Clay in the siting regions in comparison to Mont Terri

Fig. 5‑28: Comparison of mechanical behaviour in numerical (bold lines) and laboratory test results (dashed lines)

Fig. 5‑29: Typical fault microstructure of the Opalinus Clay obtained in triaxial testing

Fig. 5‑30: Unconfined compressive strength (UCS) as a function of the clay-mineral content

Fig. 5‑31: Examples of tectonic deformation accommodated in the Opalinus Clay from the recent deep boreholes

Fig. 5‑32: Distribution of small-scale fault and micro fault frequency in the Opalinus Clay from new boreholes and overall fracture frequency

Fig. 5‑33: Outcrop examples of fault structures in the Opalinus Clay

Fig. 5‑34: Example of the "Main Fault" in the Opalinus Clay at the Mont Terri rock laboratory

Fig. 5‑35: Fault architecture of a seismically mappable fault (Wildensbuch Flexure in ZNO)

Fig. 5‑36: Synthesis of trench mapping exposing fault propagation across mechanical layering

Fig. 5‑37: Matrix hydraulic conductivity of the Opalinus Clay and clay-mineral-rich confining units as a function of mineral composition and porosity

Fig. 5‑38: Hydraulic conductivities of the Opalinus Clay as a function of depth

Fig. 5‑39: In-situ test best estimate transmissivities of the Opalinus Clay derived from hydraulic packer tests as a function of the length of the test intervals

Fig. 5‑40: Distribution of the logarithm of the best estimate of the in-situ hydraulic packer test transmissivities in the Opalinus Clay

Fig. 5‑41: Comparison of the horizontal hydraulic conductivity of the Opalinus Clay with examples of clay-rich rocks worldwide

Fig. 5‑42: Hydraulic conductivity of the in-situ hydraulic packer tests as a function of the clay-mineral content of the test interval

Fig. 5‑43: Transmissivity as a function of the total thickness of a layer with clay-mineral con­tent < 20 wt.-%

Fig. 5‑44: Hydraulic head profiles based on hydrogeological long-term monitoring and in-situ hydraulic packer test data in the BOZ1, STA3, MAR1 and BEN boreholes

Fig. 5‑45: Experimental evidence of self-sealing in laboratory experiments

Fig. 5‑46: Concept of self-sealing sequence in the Opalinus Clay

Fig. 5‑47: Dependence of fracture transmissivity on the effective normal stress

Fig. 5‑48: Relationship of fault-related flow and effective stress in the Opalinus Clay at the RHE1 borehole at approximately 580 m depth below ground

Fig. 5‑49: Relationship between porosity and hydraulic conductivity in crushed and recom­pacted ("remoulded") Opalinus Clay

Fig. 5‑50: Measured effective diffusion coefficients for chloride and HTO of the investi­gated formations in the three siting regions

Fig. 5‑51: Box plots illustrating the range of effective diffusion coefficients for HTO (left column) and for Cl (right column), grouped by siting regions

Fig. 5‑52: Box plots illustrating the range of accessible porosities ε for HTO and for Cl, grouped according to the siting regions

Fig. 5-53: Correlation of geometric factor with clay-mineral content for HTO (a) and Cl (b) as a basis for estimating of HTO and Cl for the Dogger Group above Opalinus Clay, the Opalinus Clay and the Lias Group

Fig. 5‑54: Comparison of effective HTO and anion diffusion coefficients for the Opalinus Clay obtained in Mont Terri field and laboratory experiments

Fig. 5‑55: Comparison of Opalinus Clay diffusion coefficients with data from other clay-rich rocks worldwide

Fig. 5‑56: Dominant transport mechanisms in the Opalinus Clay based on the Peclet number illustrated for chloride

Fig. 5‑57: Link of texture and clay-mineral content with key hydromechanical properties in Jurassic sediments of the siting regions (lower confining units to upper aquifers)

Fig. 6‑1: Schematic visualisation of the principal geological processes potentially affecting the geological barrier and corresponding structure of the chapter

Fig. 6‑2: Geological processes acting at different timescales compared with the time period relevant for repository safety

Fig. 6‑3: Velocity fields, seismicity and stress vectors in Europe

Fig. 6‑4: Present-day Rhine catchment in a morphotectonic and geodynamic context for fluvial incision and sediment accumulation

Fig. 6‑5: Sketch of the Rhine River course with domains of Quaternary vertical motion

Fig. 6‑6: Patterns and rates of surface uplift and incision proxies on different timescales

Fig. 6‑7: Geodetic precise levelling data with measurement uncertainties

Fig. 6‑8: Present-day horizontal motion of permanent GNSS stations in Northern Switzerland

Fig. 6‑9: Horizontal velocity components deduced from repeated GNSS measurements

Fig. 6‑10: Distribution of earthquakes and selected focal mechanisms

Fig. 6‑11: Comparison of climate proxies for the northern hemisphere during the last million years

Fig. 6‑12: Key glacials in Northern Switzerland

Fig. 6‑13: Temperature, precipitation and climate classification for pre-industrial and LGM climates

Fig. 6‑14: Modelled maximum ice thickness and extent of the Alpine Ice Field during MIS 2

Fig. 6‑15: Boxplots of modelled ice characteristics during the LGM

Fig. 6‑16: The Rhine Glacier system and erosion potential at the LGM

Fig. 6‑17: Future climate simulations based on orbital configurations and different Anthro­po­genic CO2 scenarios

Fig. 6‑18: Maps showing the main landscape compartments around the siting regions

Fig. 6‑19: Catchment competition between the Rhine and Danube watersheds and drainage reorganisation

Fig. 6‑20: Morphostratigraphic units in Northern Switzerland with selected age information

Fig. 6‑21: Unconfined compressive strength and abrasion mill erosion rates as quantitative indicators of bedrock erodibility

Fig. 6‑22: Conceptual figures of local landscape evolution by (a) local baselevel fall of a main river, and (b) the formation of a breakthrough channel in an ice-marginal setting

Fig. 6‑23: Comparison of a geomorphically quiet (JO) with a highly active landscape (Wutach)

Fig. 6‑24: Overview map showing the glacial overdeepenings and the underlying rock units

Fig. 6‑25: Longitudinal profile through the Gebenstorf – Stilli Trough close to Brugg

Fig. 6‑26: Cross-sections characterising the Quaternary deposits in the lower Aare Valley, the Glatt Valley and the Thur Valley

Fig. 6‑27: Cross-section through the siting regions with the morphological and geological conditions that are key to assessing future erosion processes

Fig. 6‑28: Site-specific constraints of the landscape compartments within the siting regions

Fig. 6‑29: Simplified flowchart for calculating the remaining overburden thickness and probability of excavation at time T x

Fig. 6‑30: Inferred future rock uplift rates in the three siting regions over the next 100'000 and one million years

Fig. 6‑31: Total assumed probabilities for baselevel drop downstream of Basel

Fig. 6‑32: Results of fluvial incision modelling using the Stream Power Incision Model (SPIM)

Fig. 6‑33: Histogram and statistical measures of slope gradients within the hillslope domain of JO and surrounding area: two examples

Fig. 6‑34: The siting regions with present-day and alternative main drainage network scenarios

Fig. 6‑35: Results of modelling the evolution of local topography at one million years using the present-day drainage network

Fig. 6‑36: Outcrop maps representing the evolution of local topography at one million years using the present-day drainage network

Fig. 6‑37: Results of modelling the evolution of local topography at one million years using alternative drainage networks for JO

Fig. 6‑38: Outcrop maps representing the evolution of local topography at one million years using alternative drainage networks for JO

Fig. 6‑39: Distributions of remaining overburden thickness after one million years including local topography for JO

Fig. 6‑40: Total assumed probabilities for reference overdeepening depth per key-size glacia­tion

Fig. 6‑41: Total assumed probabilities of erodibility scaling with respect to the Molasse of Northern Switzerland

Fig. 6‑42: Step-wise illustration of procedure to evaluate the probabilities of fluvial and deep glacial erosion at a certain point

Fig. 6‑43: Scenarios for spatial occurrence of future overdeepenings within the siting regions, one million years

Fig. 6‑44: Estimated probabilities of remaining overburden thickness above the provisional disposal area in the three siting regions

Fig. 6‑45: Schematic representation showing Pleistocene subglacial meltwater recharge into the Malm aquifer in the Bodensee area

Fig. 6‑46: Rock properties of the Opalinus Clay in the shallow decompaction zone: Synopsis of the observations in the Lausen case study

Fig. 6‑47: Synthesis profiles for visualising future non-glacial erosion in the three siting regions

Fig. 6‑48: Schematic diagram summarising the long-term geological evolution of the NL site

List of Acronyms

a

Year (age)

Aal

Aalenian

AD

Advective displacement

AGNES

Automated GNSS Network for Switzerland 

a.s.l.

Above sea level

BAC1

Bachs-1-1 borehole (TBO campaign)

Baj

Bajocian

BEN

Benken borehole (Nagra)

BEZ

Beznau borehole

BOZ1

Bözberg-1-1 borehole (TBO campaign)

BOZ2

Bözberg-2-1 borehole (TBO campaign)

BUL1

Bülach-1-1 borehole (TBO campaign)

BUL1B

Bülach-1-1 borehole side track (TBO campaign)

b.g.l.

Below ground level

Car

Carnian

CDF

Cumulative Distribution Function

CRZ

Containment-providing Rock Zone

Cs

Swelling index

δ18O, δ2H

Composition of stable isotopes of the water molecule in the delta notation. The delta symbol is a way to express the relative difference of isotope ratios between sample and the standard VSMOW (Vienna Standard Mean Ocean Water)

DEM

Digital Elevation Model

De

Effective diffusion coefficient

Dp

Pore diffusion coefficient

Dw

Diffusion coefficient in bulk water

E

Young’s Modulus

ε

Water-filled accessible porosity

εa

Axial strain

EC

Erodibility classes (grouping of similar rock units, used for the assessment of future erosion)

ECRIS

European Cenozoic Rift System

EDZ

Excavation damage zone

Eh

Redox potential

ENSI

Swiss Federal Nuclear Safety Inspectorate

ERCS

Erosion rate from the concentration of solids (a procedure for measuring erosion rates with abrasion mill experiments, as a quantitative indicator of bedrock erodibility)

fa

Anion-accessible porosity fraction

fCl

Chloride-accessible porosity fraction

Fm.

Formation

FMI

Formation Microresistivity Imaging

FMT

Mont Terri rock laboratory

FOP

Fracture opening pressure

G

Geometric factor (Tortuosity)

g

Gravitational acceleration constant

GIA

Glacial isostatic adjustment

GMWL

Global Meteoric Water Line

GNSS

Global navigation satellite system

GR

Gamma Ray

GTS

Grimsel Test Site

HDS

Höhere Deckenschotter

Het

Hettangian

HI

Constant head injection test

HLW

High-level waste (spent fuel assemblies and high-level waste from reprocessing)

HT

Hochterrasse

HTO

Tritiated water

HW

Constant pressure withdrawal test/phase

HWS

HW test with subsequent pressure recovery phase

IPCC

Intergovernmental Panel on Climate Change

IQR

Interquartile range

JO

Jura Ost siting region

K

Erodibility coefficient

K

Hydraulic conductivity

Kh

Horizontal hydraulic conductivity

Kv

Vertical hydraulic conductivity

ka

Thousand years (age)

Kim

Kimmeridgian

kyr

Thousand years (duration)

l

Characteristic length of the porous medium

L/ILW

Low- and intermediate-level waste

Lad

Ladinian

LAU

Lausen borehole

LEB

Local erosion base

LGM

Last Glacial Maximum

LR04 stack

An average of 57 globally distributed benthic δ18O records (which measure global ice volume and deep ocean temperature) collected from the scientific literature

LTM

Long-term monitoring system

Ma

Million years (age)

MAR1

Marthalen-1-1 borehole (TBO campaign)

Mb.

Member

MHF

Microhydraulic Fracturing

MIS

Marine Isotope Stages

ML

Local magnitude (scale)

MPT

Mid-Pleistocene Transition

MuddPILE

Parsimonious Integrated Landscape Evolution model

MW

Moment magnitude (scale)

Myr

Million years (duration)

n

Number of data points

NAB

Nagra Work Report ('Nagra Arbeitsbericht')

NaGNet

Nagra’s permanent GNSS Network

NEA

Nuclear Energy Agency

NL

Nördlich Lägern siting region

NMR

Nuclear Magnetic Resonance

Nor

Norian

NPB

Nagra Project Report ('Nagra Projektbericht')

NT

Niederterrasse

NTB

Nagra Technical Report ('Nagra Technischer Bericht')

OD

Overdeepening

OFT

Oftringen borehole

OPA

Opalinus Clay

OMM

Obere Meeresmolasse (Upper Marine Molasse Group)

OSM

Obere Süsswassermolasse (Upper Freshwater Molasse Group)

Oxf

Oxfordian

p'

Mean effective stress

P32 value

Fracture area per unit volume

pCO2

CO2 partial pressure

PDF

Probability density function

Pe

Peclet number

PEGASOS

Probabilistic seismic hazard analysis for Swiss nuclear power plant sites

PMT

Pressure meter test

PgC

Petagrams of carbon (1 PgC is equal to 1 Gigatonne of carbon)

proj.

Projected

PRP

PEGASOS Refinement Project

q

Deviator stress

|q|

Module of Darcy flux

QoI

Quantities of interest

ρ

Rock bulk density

R, r

Pearson correlation coefficient

R2

Coefficient of determination. Number between 0 and 1 that measures how well a statistical model predicts an outcome

Rha

Rhaetian

RHE1

Rheinau-1-1 borehole (TBO campaign)

RIN

Riniken borehole (Nagra)

RIO

Rational Impartial Observer (part of SHELF elicitation protocol)

RSR

Regime Stress Ratio

σ'n

Normal effective stress

SED

Schweizerischer Erdbebendienst (Swiss Seismological Service)

SEM

Scanning Electron Microscopy

SFOE

Swiss Federal Office of Energy

SGT

Sectoral Plan for Deep Geological Repositories

SHmax

Maximum horizontal stress magnitude

Shmin

Minimum horizontal stress magnitude

SHA

Schafisheim borehole (Nagra)

SHELF

Sheffield Elicitation Framework

Sin

Sinemurian

SLA

Schlattingen borehole

SPIM

Stream Power Incision Model

SQ

High-pressure squeezing

SR

(Dry) Sleeve reopening test

SRTM

Shuttle Radar Topographic Mission (of NASA)

STA2

Stadel-2-1 borehole (TBO campaign)

STA3

Stadel-3-1 borehole (TBO campaign)

STP

Standard temperature and pressure

Sv

Vertical stress magnitude

T

Transmissivity

TBO

Nagra’s deep drilling campaign (9 deep boreholes drilled between 2019 and 2022 in the three siting regions of JO, NL, ZNO)

TDS

Tiefere Deckenschotter or Total Dissolved Solids

Toa

Toarcian

TRU1

Trüllikon-1-1 borehole (TBO campaign)

TEM

Transmission Electron Microscopy

TVD

True Vertical Depth

TWT

Two-Way Travel time

U

Rock uplift

UCS

Unconfined Compressive Strength

UMM

Untere Meeresmolasse (Lower Marine Molasse Group)

USM

Untere Süsswassermolasse (Lower Freshwater Molasse Group)

vol.-%

Volume percent

WEI

Weiach borehole (Nagra)

wrt.

With respect to

wt.-%

Weight percent

yr

Year(s) (duration)

z

Depth

ZNO

Zürich Nordost siting region